サロマ湖湖口における海浜変形

菊地建三*・宇多高明**・川瀬晃***・佐々木哲士***

1. まえがき

我が国には浜名湖をはじめとして幾つかの感潮湖が存在する。中でも北海道のオホーツク海沿岸にあるサロマ湖、能取湖などは規模が大きい感潮湖として有名である。最近、筆者ら（菊地ほか、1990）は、能取湖を例として大規模な感潮湖口水路を建設した場合の海浜地形変化の実態分析を試み、導流堤・防波堤の延伸に伴って湖口沖にテラス状地形が形成される状況を明らかにした

サロマ湖湖口は能取湖湖口と同様海岸条水下にあり、能取湖湖口より西へ約34km離れて位置するほぼ自然なままの感潮湖口である。その周辺では、1929年の工事開削以来、地形変化の調節労働物がないため若者の海浜地形変化を疑ぎ、現在に至っても変化している。このような感潮湖口水路の設計法については、Braun et al. (1978) および近藤 (1977, 1979) により明らかにされているが、湖口周辺の海浜地形変化に関する実態的な研究は少ない。自然な状態で残された湖口周辺の海浜地形変化の実態を理解することは今後の感潮湖口水路の設計上重要なことである。本研究では、我々が国最大規模の自然感潮湖であるサロマ湖の現湖口の人工開削以来約60年にわたる湖口前における海浜地形変化の変化を、マクロ的な湖浜地形変化特性について検討すると共に、底質調査の結果についても明らかにする。

2. 調査方法と波浪特性

サロマ湖はオホーツク海に面し、琵琶湖、賀名湖に次いで我が国第3位の水域面積（151.7㎢）を持つ淡水湖である。サロマ湖の湖水は、もともと湖の東端にあったが、現在は東西2箇所に人工的に閉鎖された湖水がある（図-1参照）。これからのうち本研究で対象とすることは西側の湖口である。ここは波能として、水路が開かれた、このとき春先であったため

湖内の水位が高く、湖から流出する流れは激流となって湖口を拡張した。サロマ湖の湖口湖水は、冬には自然に湖口が閉塞し、春には「湖きり」を行くて湖口を開くことを繰り返していた湖であったが、現湖口におけるこの「湖きり」以降、湖口閉塞はなくなった。その後、このままの状態が続いたが、1973年、第2湖口の開削が着手された。この間、1974年1月には現湖口から湖水が侵入し、湖内の養殖施設に多大な被害が生じた。1978年12月には第2湖口が高波浪のため自然断水した。1981年春には、現湖口前面海岸に沿岸砂州が発達し、常呂側から現湖口を塞ぐ形で数kmにわたって延び、漁船の航行に影響が及んだ。その後、1984年には第2湖口が完成をみた。

この研究では、このような経緯を経てきたサロマ湖の湖口において実施された測深測量と底質調査の大データをもとに議論を進める。

サロマ湖周辺において、長期にわたり波浪観測が行われているのは、現湖口の東約30kmに位置する釧路港（能取湖）と西約42kmに位置する秋田港の2地点である。本研究ではサロマ湖湖口付近での入射波エネルギーを推算することとし、まずこの両地点における波浪観測データの統計処理及び比較した。次に、沿岸方向に110km、岸沖方向に34kmの領域において不規則波の波浪計算を行い、観測値に対応する波浪計算結果を推算した。この場合、波浪データとしては波向の測定精度の高い経別港の1985年1月～1987年12月のデータを用いた。

更に、この波浪計算をサロマ湖湖口へ入射させ、湖口冲

* (社)北海道養護施設会社
** 正会員 工博 建設省土木研究所海岸研究室長
*** 正会員 (株)アルファ水工コンサルタンツ

図-1 サロマ湖の位置図
の20±20m地点における波浪特性を推算した。不規則波の波浪変形計算には永井ほか(1974)によるエネルギー平衡方程式に基づく計算方法を用いた。ただし、回折についてはエネルギー分散法を用いた。

不規則波の計算においては、本対象域に来襲する波の波高として考えられるN70°W～N10°Eの範囲を、10°刻みの19波向に分割した。また、周期については、5～15秒の間を1秒刻みに分割した。さらに、方向集中度パラメータ(\(S_{max}\))の以下3種を採用した。

\[
S_{max} = \frac{H_s}{L_0}\]

\[
S_{max} = \frac{H_s}{L_0} < 0.05\]

\[
S_{max} = \frac{H_s}{L_0} < 0.01\]

以上、波高19種、周期11種、\(S_{max}\)種の計627ケースについて回折計算を行い、算出された波高分布と回折係数の分布からサロマ湾への入射波特性を調べた。

以上の計算によって求められた季節ごとの波向別波浪エネルギーを図-2に示す。春、夏季には波浪エネルギー量は少ない。秋、冬季にはNNEおよびNE方向のエネルギーが卓越することが分かる。サロマ湾潮汐に基づの沿岸線への法線方向はN20°Eであることから、NNEからの入射波は汀線ほぼ直角入射し、NEからの入射波は西向きの沿岸漂砂を生じさせることになる。

3. 湖口部の海底地形変化

サロマ湾湖口部では湖口開削直後の1929年より繰り返し深浅測量が行われてきた。これらのうち過去の測量の多くは基準点位置が不明であったため、ここでは比較的最近の地形変化特性の分析に重点を置き、1983年から1989年の期間に実施された6回の測量の結果について述べる。

まず、1988年7月の測量で求められた湖口部地形を図-3に示す。湖口では外海と湖内の潮位差により強い入退潮流が生ずるため、それによって最大水深が20mに多実に達する湖口部が形成されている。湖口部の潮汐は、海戦線への変動の方向に対し反時計回りの方向に約10°傾いている。また、湖口部の水深の最も深い部分は砂州の湖内側の地点にある。さらに、水路の沖側および湖内側には主として入退潮流によって形成されたと考えられるテラス状地形が広がっている。

次に、6回の測量結果を図-4(a)～(f)に示す。これらによれば次の特徴が指摘される。

(1)湖口部外海へ向かう流は、汀線直角方向(およびNNE方向)から西南西へ向かう方向(NW方向)の間で絶えず変動を繰り返し、不安定な状況にある。

(2)湖口部沖側の流れは、湖口冲側より発達する沿岸砂州とともに左傾斜する傾向にあり、この沿岸砂州が十分発達し、流れが沿岸側へ急激に曲げられた状態になると、潮流の流出時の流れによって沿岸砂州がフラッシュされ、流れが再び汀線と直角方向に戻る。

(3)1983年7月から1984年4月の9カ月間に沿岸砂州が岸方向へ急激に移動しているが、この間では経塚で\(H_{1/3}\)が6m近く、観測では7mを越える高波浪が観測された。このことから、この海岸変形は主として波の作用に由来ると考えられる。このとき、図-4(a), (b)を比較すると、-8m以深の等深線には大きな変化が見られず、沿岸砂州が後退した部分には緩斜面前が形成された。

(4)上記の地形変化は生じたものの、1984年4月以降、再び沿岸砂州は沖方向へ移動し、1987年8月フラッシュされたことからみて、海岸変形に及ぼす潮流の効果も著しい。

以上のように、湖口部では退潮流と波の作用により地形変形が生じている。
サロマ湖湖口における海浜変形

図-4 1983年〜1989年におけるサロマ湖湖口部の海浜地形

の沿岸砂州の伸長を伴い、波浪流による沿岸砂州の切断にによって湖口周辺の地形変化は特徴付けられる。

次に、湖口部の代表断面における海浜断面形の変化について調べてみる。まず湖口の東側のA-A'断面の変化を図-5に示す。この断面では海浜地形変化は非常に小さく、沖合の-6m付近には平坦面が発達し、それより沖では約1/40の海底勾配となる。湖口部のB-B'断面における断面形（図-6）では、沿岸砂州やミザ筋位置の変動に伴い、テラス上の水深は激しく変化しているが、テラス先端部の-8m地点はほぼ一定しており、その沖側の急斜面でも水深変化や勾配の変化はほとんど見られない。湖口の西側の測線C-C'では沿岸砂州の発達が見られ、地形変化はほぼ-8mで収束している（図-7）。また、東西端の断面を比較すると、西側では汀線付近とテラス先端部が非常に急勾配で、テラスの幅も狭い。これに対して東側では汀線付近と沖合の海底勾配がほぼ等しく、西側より緩やかで、その中間の水深5〜7mには広い平坦面が発達しているのが特徴である。また、両断面とも沖合で海底地形変化が収束する水深はほぼ8mにある。このことは、当海岸において波によって顕著な地形変化が収束する限界水深がほぼこの付近であることを示している。

図-8には蒸瀬水路を横切るD-D'断面の変化を示した。水路は最大水深15mを保ちつつ東西方向に平行移動している。
4. 湖口周辺の底質特性

湖口沖で1988年6月に実施した底質調査より、底質粒径の平面分布を求めると図-9となる。図中、中央粒径が1mm以下、1.2~1.5mm、2.5~5mm、および5mm以上にランク分けして表示した。湖口の最狭部では非常に粒径の大きな底質が現われ、その最大値は15.5mmに達する。しかし、湖口をとり囲む半円形の沿岸砂州を越えたテラス状地形の前壁斜面上の粒径が急速に小さくなる。このことは、狭縄部では入退潮流が非常に強く、海底面ではアーチカルートが形成されていることを意味する。また、湖口の中心線に対し、底質分布が東西で非対称であることも特徴としてあげられる。基準点Pより西側に700m離れた測線No.1では沖合部の中央粒径は0.15 mm程度であるのに対し、湖口東側の測線No.8の沖合部では0.4~0.5mmとずっと大きな粒径が出現している。

同様に、1989年1月に実施した底質調査の結果を深浅図とともに図-10に示す。図-9、10では底質調査の測線位置はまったく同一である。両者を比較すると、湖口沖の水深6m以上の暗礁状地形はほぼ同じであるが、湖口沖のテラス状地形はかなり大きな変化が見られ、ミオ系が全体に西に傾いた。これと同時に、テラス地形が沖方向に進出した位置での粒径の底質が現われるようになった。しかし、そのほかの地区での底質にはあまり大きな変化はない。以上のように、約7ヶ月間にわたる湖口の

図-11 底質中央粒径と水深の関係 (1988年6月)

ミオ系が西側へ傾いた部分では粒径が粗くなり、そのほかの海域での底質粒径はあまり変化しないことが分かった。

第1回目の底質調査データより底質粒径と水深の関係を調べると図-11となる。湖口沖で-2mで約5mmと粗いが、水深ともとに急激に減少し、-16mでは0.2mmにまで減少する。これは湖口から流出する退潮流の海底面へ及ぼす作用が急激に弱まったことを意味する。一方、湖口の左右の測線の-4m以深では右岸側でd50=0.8mmに対し、左岸側では0.1~0.3mmと明らかに細粒の底質が現われる。

5. サロマ湖湖口部の海浜変形パターン

サロマ湖は、湖口が開削された1929年直後に外海の波浪や沿岸流の影響をあまり受けず、砂州と主変化の湖汐流が支配的であり、そのため湖口部には左右対称性のテラスが形成された（図-12 a）。湖口開削から数年を経ると、沿岸砂州が右岸側より左岸側へ向かって流動しながら延びたが、このように左岸側からの沿岸砂州の発達はほとんどなかった。当地区の地形が湖口部での湖汐流のみによって形成されるとすれば、このような非対称な地形は生じないはずである。また、沿岸入射波のみが卓越するとすれば、図-12 b）に示すように、湖口部湖汐流とその左右側付近で生じる循環流、および湖口中央に向かって屈折する波とそれに伴う沿岸流により、沿岸砂州は左右対称形に伸びるはずである。したがって上述の非対称地形の形成原因には湖口湖汐流のみならず、入射波ならびに沿岸流が重要な働きをしていると考えられる。既に述べたように、当地区への来襲波の方向は、汀線に対し右側より入射するNEが卓越し、次いで東方に入射波が直角方向からの入射となるNEの頻度が高い。このような、周波数仕様の卓越性は西向きとなる。また十分沖合では東-向きから湖流が卓越しているため、右岸側ではこの湖流に起因する循環流が発生する。しかかも右岸側からの沿岸砂州の発達に伴って営力効果が生じるため、右岸側からの沿岸漂砂はここで捕捉される。その結果
のようになると、湖口部前面の沿岸砂州は次第にフラッシュされ、図12 d)のように新たに流路が形成される。ここで左岸前面に残された沿岸砂州の先端部は、湖口潮流と左岸からの沿岸流との均衡を保たなから一部は湖口潮流で押し出される。押し出された砂の一部は沿岸流に左岸沖へと運ばれる。また、その一部は正面から入射する波により、左岸側で岸方向へ動き、向か（図12 e)。サロマ湖の現湖口部では、このように斜め入射波による右岸側からの沿岸砂州の発達と、それによる流路の左傾化、沿岸砂州のフラッシュによる新たな流路の形成というパターンが繰り返されている。

6. 結論

サロマ湖周边で行った深浅測量や底質採取などの現地調査より得られた成果は以下に要約される。

①サロマ湖現湖口は1929年の人工開削により通水した結果、現在まで閉塞することなく安定し平衡断面まで拡大し、最深部は断面勾配約1/15、幅250～300mでほぼ安定している。また、流路沿ってアマーリングが生じている。

②湖口右岸側の海底形状は常にステップ型で流路を呈し、左岸側はバー型で形状を示す。また汀線付近の海底勾配は左岸側の方が急である。

③底質粒径は総体的に湖口部で最も大きく、次に右岸側が大きく比較的均一であるのに対し、左岸側は粒径も小さく均一である。

④湖口部では開割後湖側にデラス地形が形成され、その後NE方向からの卓越波の作用により右岸側の沿岸砂州が左岸側方向へと延びていき、流路を左傾化させた。この沿岸砂州が発達し、湖口部前面を塞ぐようになると、湖口砂洲は湖口部前面の沿岸砂州をフラッシュし、新たな流路が形成された。サロマ湖現湖口周辺の海底地形変化は近年このようなパターンを繰り返している。

参考文献

菊池龍三・宇多高周・川崎晃（1990）：能登湖湖口における浜地形変化。海岸工学論文集、第37巻、pp.469-473。

近藤敏郎（1977）：人工導水工の設計方法について。第24回海岸工学講演会論文集、pp.529-533。

近藤敏郎（1979）：導水工の水理、1979年度水工学に関する研究論文集、pp.6-1-B-7-16。

永井広平・関屋雄男・高井俊郎（1974）：方向スペクトルをもつ冲波の浅水域における伝播の計算について。第21回国海工学講演会論文集、pp.249-263。