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Abstract
A method to recognize 6D poses of wave-dissipating blocks from 3D point clouds measured by photogrammetry is proposed in the paper. 
The model-based object recognition approach was adopted. To ensure the accuracy, the recognition process was designed to be composed 
of the deep-learning-based instance segmentation and descriptor-based 6D pose estimation. Fast Point Cloud Cluster (FPCC) was 
originally proposed for the instance segmentation. The performance of the recognition was verified and discussed. 

1. Introduction
In ports and harbors, many concrete wave-dissipating blocks are
installed to prevent erosions caused by the waves. As time goes by,
the blocks gradually sink and even ablate. Therefore, as shown in
Fig. 1, periodical repair works need to be carried out where new
supplemental blocks are stacked on top of the existing blocks until
the planned raising height. Before the works, constructors must
estimate the number of blocks to be supplemented as precisely as
possible. Recently, the constructors can easily capture the surface
of existing blocks as 3D point clouds using drone-based
photogrammetry and narrow-multi-beam(NMB) sonar. However,
because the individual 6D poses of the existing blocks are not
precisely identified in the point clouds currently, the number of
blocks needed cannot be accurately estimated.

To solve the issue, we propose a method to recognize 6D stack-
up poses of individual wave-dissipating blocks from measured 3D 
point clouds. Because the nominal block shape is identical and 
given as a CAD model, the model-based object recognition 
approach was adopted. To ensure the accuracy and efficiency, the 
recognition process was composed of the deep-learning-based 
instance segmentation and descriptor-based 6D pose estimation. 
The performance of the recognition was verified quantitatively 
and qualitatively. 

2. Problem Statement and Approach
Fig. 2 illustrates two problems to be solved in our study. First, the
block stack-up poses in the existing upper level should be
recognized from large-scale dense point clouds measured by
photogrammetry and NMB sonar. Second, plausible 3D stack-up
poses and the number of supplemental blocks between the existing
upper level and planned raising height should be estimated with
non-overlap constraint. This report focuses only on the first
problem, i.e., the recognition of existing block stack-up poses
from point clouds measured by photogrammetry.

In view of the huge advantages of convolutional neural 
networks (CNNs) in segmentation [1] and poor performance in 
pose estimation [2], the recognition process of existing block 
stack-up poses is divided into two stages as shown in Fig. 3. First, 
in the block instance segmentation, the point cloud of a single 
block is segmented from the whole point clouds by CNNs. Second, 
in the block pose estimation, the 6D pose of an individual block is 
estimated from each segmented point cloud using the classical 
descriptor-based algorithms (Point Pair Feature (PPF) [3] and ICP 
[4]) and a CAD model of the block. 

3. Block Pose Estimation Process
3.1  Block instance segmentation by FPCC
Fast Point Cloud Cluster Net (FPCC-Net), a type of CNN, is 
newly proposed for the block instance segmentation in this study. 
FPCC-Net has a modified structure of the CNN for instance 
segmentation [1]. As shown in Fig.4, FPCC-Net is composed of a 

point-wise feature extractor and two branches. The point-wise 
feature extractor is a CNN that has the semantic segmentation 
structure of DGCNN [5]. The extracted features are sent to the 
point-wise embedded feature branch and center score branch, 
respectively. And the points in the same instance have similar 
features, while points in the different instances have relatively 
different features. The center score branch predicts the probability 
that each point is placed at the center of the object.
   In the inference phase, non-maximum suppression is used to 
find the point with the highest score for each target object as a 
reference point for clustering. Then the distance between the 
remaining points and the reference point were calculated. The 
remaining points are clustered with the nearest center point in 
terms of the feature distance. 

Fig. 1 Block stacking work and the measured point clouds

Fig. 2 The problems to be solved in this study 
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Fig. 3 The pipeline of the proposed block pose estimation
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3.2  Training by synthetic point cloud scenes
CNNs should usually be trained by a bunch of manually -
segmented point cloud scenes of actual block stack-up scenes. 
However, it is practically impossible to prepare large amount of 
high-accuracy segmented point clouds of the actual scenes. To 
address the issue, many different collision-free block stack-up 
scenes are virtually generated in a computer simulation using a 
block CAD model and Bullet engine [6]. In each scene, as shown 
in Fig. 5, 50 blocks free-fell at random locations in a 10m by 
10m region, and the synthetic point clouds with instance labels are 
sampled on top of the stack-up blocks. Our training data set 
consists of the synthetic point clouds of 500 scenes. 
3.3  Block pose estimation by PPF and ICP
For each instance after the segmentation, if the number of point 
clouds in it is greater than 3000, it is considered as a candidate for 
pose estimation. As shown in Fig. 3, PPF descriptor [3] are 
evaluated at every point both of the scene point cloud and sampled 
points on the block CAD model, and the initial 6D pose of the 
block is estimated. Then, ICP [4] is performed to refine the pose.

4 Case study
4.1 Instance segmentation accuracies
The point clouds of wave-dissipating blocks were captured by 
UAV-based photogrammetry from Sawara port in Hokkaido. 
Three validation regions with 10m by 10m as shown in Fig. 6(a) 
were sampled in it. Each region contains about 180,000 points, 
and 5-ton clinger blocks are stacked. The ground truth instance 
labels were made manually in these three regions. 

An instance segmentation result using FPCC-Net is visualized 
in Fig.6(b)-(c). Fig. 6(b) indicates the center score. The red 
represents higher score region. Fig. 6(c) is the estimated block
center found by non-maximum suppression. The final instance 
segmentation is visualized in Fig. 6(d). The segmentation 
accuracy was evaluated using the metric of the average precision 
(AP) with an IoU threshold of 0.5. As indicated in Table 1, the 
accuracies in all validation regions achieved 85-92%. It indicates 
that the proposed FPCC-Net exhibits the good ability enough for 
block instance segmentation. 
4.2 Pose estimation error
Given the fact that determining ground truth 6D poses of all blocks 
in scenes is a time-consuming and ambiguous task. Thus, an 
indirect method is used to evaluate the quality of the pose 
estimation. After the pose estimation, the scene was reconstructed 
by placing the block CAD model in those poses. Fig. 7(a) is an 
example of the point cloud of a validation region. Then the nearest 
distance between each measured point and the model is evaluated 
as the pose estimation error. Fig.7(b) indicates the estimated block 
poses of Fig. 7(a), and Fig.7(c) shows its pose estimation error. 
The smaller the error, the greener the color. Finally, the average 
nearest distance between each measured point and the model in 
the whole scene was evaluated as a pose estimation error. The 
errors in ten sampled regions are summarized in Table 2. All 
errors went below 0.1m, which exhibited the excellent ability of 
the proposed block pose estimation. 

5 Summary
A method to recognize 6D poses of wave-dissipating blocks from 
3D point clouds measured by photogrammetry was proposed 
based on deep-learning and shape descriptor. The validation 
results exhibited the excellent instance segmentation and pose 
estimation performances in block recognition. At present, only the 
segmentation on multi-instance but single-category scene has 
been implemented. In the future, we will implement the 
segmentation on multi-category and multi-instance scene.
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Fig. 4  Network architecture of FPCC-Net
Fig. 5 Virtual block stack-up simulation

Fig. 6  An example of block instance segmentation
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Fig. 7  An example of block pose estimation

Table 2  Block pose estimation error in different regions [m]

Table 1 Instance segmentation accuracies in the validation [%] 
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